Development and derivation of bacteremia prediction model in patients with hepatobiliary infection

Link to article at PubMed

Am J Emerg Med. 2023 Aug 11;73:102-108. doi: 10.1016/j.ajem.2023.08.015. Online ahead of print.


INTRODUCTION: Hepatobiliary infections are common in the emergency department (ED), and the mortality rate for this condition is high. A suitable bacteremia prediction model would support prompt identification of bacteremia and appropriate management of hepatobiliary infections in the ED. Therefore, we attempted to produce a bacteremia prediction model with both internal and external validation for hepatobiliary infections in the ED.

METHODS: Patients with hepatobiliary infection were extracted from retrospective cohort databases of two tertiary hospitals from January 2018 to December 2019 and from January 2016 to December 2019, respectively. Independent risk factors were determined using multivariable logistic regression in a developmental cohort. We assigned a weighted value to predictive factors and developed a prediction model, which was validated both internally and externally. We assessed discrimination using the area under the receiver operating characteristics curve (AUC).

RESULTS: One hospital cohort of 1568 patients was randomly divided into a developmental group of 927 patients (60%) and an internal validation group of 641 patients (40%), and 736 people from the other hospital cohort were used for external validation. Bacteremia rates were 20.5%, 18.1%, and 23.1% in the developmental, internal, and external validation cohorts, respectively. Nine significant factors were used for predicting bacteremia, including age, three vital signs, and five laboratory tests. After applying our bacteremia prediction rule to the validation cohort, 56.5% and 53.8% of the internal and external validation groups were classified as low-risk bacteremia groups (bacteremia rates: 8.6% and 13.9%, respectively). The AUCs were 0.727 (95% confidence interval [CI]: 0.686-0.767), 0.730 (95% CI: 0.679-0.781), and 0.715 (95% CI: 0.672-0.758) for the developmental, internal, and external validation cohorts, respectively. The sensitivity and specificity for internal validation/external validation was 73.2%/67.6% and 63.0%/60.2%, respectively.

CONCLUSION: A bacteremia prediction model for hepatobiliary infection might be useful to predict the risk of bacteremia. It might also reduce the need for blood culture in low-risk patients.

PMID:37647844 | DOI:10.1016/j.ajem.2023.08.015

Leave a Reply

Your email address will not be published. Required fields are marked *