Mechanisms of enhanced renal and hepatic erythropoietin synthesis by sodium-glucose cotransporter 2 inhibitors

Link to article at PubMed

Eur Heart J. 2023 Apr 22:ehad235. doi: 10.1093/eurheartj/ehad235. Online ahead of print.


Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major heart failure events, an action that is statistically linked to enhanced erythropoiesis, suggesting that stimulation of erythropoietin and cardioprotection are related to a shared mechanism. Four hypotheses have been proposed to explain how these drugs increase erythropoietin production: (i) renal cortical reoxygenation with rejuvenation of erythropoietin-producing cells; (ii) counterregulatory distal sodium reabsorption leading to increased tubular workload and oxygen consumption, and thus, to localized hypoxia; (iii) increased iron mobilization as a stimulus of hypoxia-inducible factor-2α (HIF-2α)-mediated erythropoietin synthesis; and (iv) direct HIF-2α activation and enhanced erythropoietin gene transcription due to increased sirtuin-1 (SIRT1) signaling. The first two hypotheses assume that the source of increased erythropoietin is the interstitial fibroblast-like cells in the deep renal cortex. However, SGLT2 inhibitors do not alter regional tissue oxygen tension in the non-diabetic kidney, and renal erythropoietin synthesis is markedly impaired in patients with anemia due to chronic kidney disease, and yet, SGLT2 inhibitors produce an unattenuated erythrocytic response in these patients. This observation raises the possibility that the liver contributes to the production of erythropoietin during SGLT2 inhibition. Hypoxia-inducible factor-2α and erythropoietin are coexpressed not only in the kidney but also in hepatocytes; the liver is a major site of production when erythropoietin stimulation is maintained for prolonged periods. The ability of SGLT2 inhibitors to improve iron mobilization by derepressing hepcidin and ferritin would be expected to increase cytosolic ferrous iron, which might stimulate HIF-2α expression in both the kidney and liver through the action of iron regulatory protein 1. Alternatively, the established ability of SGLT2 inhibitors to enhance SIRT1 might be the mechanism of enhanced erythropoietin production with these drugs. In hepatic cell lines, SIRT1 can directly activate HIF-2α by deacetylation, and additionally, through an effect of SIRT in the liver, peroxisome proliferator-activated receptor-γ coactivator-1α binds to hepatic nuclear factor 4 to promote transcription of the erythropoietin gene and synthesis of erythropoietin. Since SIRT1 up-regulation exerts direct cytoprotective effects on the heart and stimulates erythropoietin, it is well-positioned to represent the shared mechanism that links erythropoiesis to cardioprotection during SGLT2 inhibition.

PMID:37086098 | DOI:10.1093/eurheartj/ehad235

Leave a Reply

Your email address will not be published. Required fields are marked *