Outcome of SARS CoV-2 inpatients treated with convalescent plasma: One-year of data from the Veneto region (Italy) Registry

Link to article at PubMed

Eur J Intern Med. 2021 Dec 27:S0953-6205(21)00433-7. doi: 10.1016/j.ejim.2021.12.023. Online ahead of print.

ABSTRACT

OBJECTIVES AND BACKGROUND: Convalescent plasma (CP) has been used worldwide to contrast SARS-CoV-2 infection. Since April 2020, it has also been used in the treatment of patients with COVID-19 in the Veneto region (Italy), along with all the other available drugs and therapeutic tools. Here we report data analysis and clinical results in 1,517 COVID-19 inpatients treated with CP containing high-titre neutralizing anti-SARS-CoV-2 antibodies (CCP). Mortality after 30 days of hospitalization has been considered primary outcome, by comparing patients treated with CCP vs all COVID-19 patients admitted to hospitals of the Veneto region in a one-year period (from April 2020 to April 2021).

PATIENTS AND METHODS: Adult inpatients with a severe form of COVID-19 have been enrolled, with at least one of the following inclusion criteria: 1) tachypnea with respiratory rate (RR) ≥ 30 breaths/min; 2) oxygen saturation (SpO2) ≤ 93% at rest and in room air; 3) partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ≤ 200 mmHg, 4) radiological picture and/or chest CT scan showing signs of interstitial disease and/or rapid progression of lung involvement. Patients received a maximum of three therapeutic fractions (TFs) of CCP with a neutralizing antibody titre of ≥ 1:160, administered over a period of 3-5 days. If TFs of CCP with titre ≥ 1:160 were unavailable, 2 with antibody titre of ≥ 1:80 have been administered.

RESULTS: Of the 1,517 patients treated with CCP, 209 deceased at the 30-day follow-up (14%). Death was significantly associated with an older age (p<0.001), a longer time of hospitalization before CCP infusion (p<0.001), a greater number of inclusion criteria (p<0.001) and associated comorbidities (p<0.001). Conditions significantly associated with an increased frequency of death were PaO2/FiO2 ≤ 200 (p<0.001) and tachypnea with RR>30 (p<0.05) at entry, concurrent arterial hypertension (p<0.001), cardiovascular disease (p<0.001), chronic kidney disease (p<0.001), dyslipidemia (p<0.05) and cancer (p<0.05). Moreover, factors leading to an unfavorable prognosis were a life-threatening disease (p<0.001), admission to Intensive Care Unit (p<0.001), high flow oxygen therapy or mechanical ventilation (p<0.05) and a chest X-ray showing consolidation area (p<0.001). By analyzing the regional report of hospitalized patients, a comparison of mortality by age group, with respect to our series of patients treated with CCP, has been made. Mortality was altogether lower in patients treated with CCP (14% v. 25%), especially in the group of the elderly patients (23% vs 40%,), with a strong significance (p<0.001). As regards the safety of CCP administration, 16 adverse events were recorded out of a total of 3,937 transfused TFs (0,4%).

CONCLUSIONS: To overcome the difficulties of setting up a randomized controlled study in an emergency period, a data collection from a large series of patients with severe COVID-19 admitted to CCP therapy with well-defined inclusion criteria has been implemented in the Veneto region. Our results have shown that in patients with severe COVID-19 early treatment with CCP might contribute to a favourable outcome, with a reduced mortality, in absence of relevant adverse events.

PMID:34980505 | PMC:PMC8710400 | DOI:10.1016/j.ejim.2021.12.023

Leave a Reply

Your email address will not be published. Required fields are marked *