Evaluation of masks’ internal and external surfaces used by health care workers and patients in coronavirus-2 (SARS-CoV-2) wards

Link to article at PubMed

Environ Res. 2021 Mar 5:110948. doi: 10.1016/j.envres.2021.110948. Online ahead of print.


One of the simplest and most effective individual measures is to wear a mask to prevent the spread of respiratory droplets from carriers to healthy people and patients admitted to corona wards and their staff. This research aimed to investigate the contamination of internal and external surfaces of various masks used by patients and staff with SARS coronavirus, as well as the possibility of airborne transmission in Imam Khomeini Hospital, Ardabil. For this purpose, twenty-five staff members and ten patients participated voluntarily in this cross-sectional study. Sampling was performed using swaps on both sides (inside and outside) of various surgical masks, N-95, and filtering face piece FFP2 through standard methods in compliance with the relevant conditions and from a surface of at least 5 cm2. Next, the collected samples were immediately transferred to a laboratory and analyzed by real-time PCR method to detect the presence of SARS-CoV-2 virus after viral genome extraction. Based on the obtained results, from a total of 30 collected samples (25 of personnel masks plus 5 samples of hospitalized patients' masks). A total of 60 masks were sampled. For every collected sample, the researchers studied both inside and outside of the mask. Upon analyzing the data, it was showed that 6 mask samples were positive for the presence of coronavirus. Nonetheless, all samples taken from both inside and outside of the personnel masks (N-95 and FFP2 types of masks) were negative. Among the 6 positive samples, four cases were related to the internal part, one case to the outer part of the three-layer surgical masks, and one to the outer part of the N-95 masks in hospitalized patients. As masks reduce the concentration of virus particles, they can play an important role in creating immunity.

PMID:33684411 | DOI:10.1016/j.envres.2021.110948

Leave a Reply

Your email address will not be published.