Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic)

Link to article at PubMed

Braz J Infect Dis. 2020 Aug 18:S1413-8670(20)30109-4. doi: 10.1016/j.bjid.2020.07.010. Online ahead of print.


INTRODUCTION: Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings.

METHODS: Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolic categories were "medium-risk" (D-dimer >1000ng/mL or CRP >200mg/L); "high-risk" (D-dimer >3000ng/mL or CRP >250mg/L) or "suspected" (D-dimer >5000ng/mL). Cytokine storm risk was categorized by ferritin.

RESULTS: 939/1039 COVID-19 positive patients (median age 69 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolic flag criteria were reached by 568/939 (60.4%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p<0.0001. Cytokine storm flag criteria were reached by 212 (22.5%) of admissions, including 80/275 (29.0%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p<0.0001. The maximum thromboembolic flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p<0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1-28.9]) died, p=0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30-0.37) before traffic light implementation, 0.22 (0.17-0.27) after implementation, p<0.001. In subgroup analyses, older patients, males, and patients with hypertension (p≤0.01), and/or diabetes (p=0.05) derived the greatest benefit from admission under the traffic light system.

CONCLUSION: Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.

PMID:32857990 | PMC:PMC7434453 | DOI:10.1016/j.bjid.2020.07.010

Leave a Reply

Your email address will not be published. Required fields are marked *